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Voice Cloning: Useful Apps
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Industry leaders utilize advanced Al
voice synthesis to create more natural

and intelligent Voice Al applications.

In April 2023, a song using Al to clone the
voices of Drake and The Weeknd went viral on
social media, garnering over 15 million views
on TikTok in just two days.
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Al voice synthesis recreated Val Kilmer's
voice for his role in Top Gun: Maverick
after cancer treatment damaged the actor's
real voice.
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Voice Cloning: Useful Apps
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Industry leaders utilize advanced Al In April 2023, a song using Al to clone the Al voice synthesis recreated Val Kilmer's
voice synthesis to create more natural voices of Drake and The Weeknd went viral on voice for his role in Top Gun: Maverick
and intellicent Voice AT applications social media, garnering over 15 million views after cancer treatment damaged the actor's
& bp ' on TikTok in just two days. real voice.
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Rapid advancements in voice cloning have been widely used in

conversational Al, entertainment and accessibility
—
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WHEYNSIPESE say or key in your dateof birth.

Finance worker in Hong Kong paid out $25 million after Journalist from Vice bypassed a bank's voice verification

attending a deepfake video call. Scammers cloned the voices system using a free Al voice clone, granting him access to
and images of senior executives to order fraudulent transfers. his personal account information.
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Voice Cloning: Security Risks

WHEYNSIPESE say or key in your dateof birth.

Finance worker in Hong Kong paid out $25 million after Journalist from Vice bypassed a bank's voice verification

attending a deepfake video call. Scammers cloned the voices system using a free Al voice clone, granting him access to
and images of senior executives to order fraudulent transfers. his personal account information.

Need for effective defenses against malicious voice cloning
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Voice Cloning Attacks
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“Good morning”
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Proactive Defense Strategy
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Existing Defense: Protective Perturbations
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Existing Defense: Protective Perturbations
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Existing Defense: Protective Perturbations
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Rethinking Current Protective Perturbations

Existing proactive perturbations methods add imperceptible distortions to
speech, successfully prevent voice cloning in ideal conditions.
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Rethinking Current Protective Perturbations

Existing proactive perturbations methods add imperceptible distortions to

speech, successfully prevent voice cloning in ideal conditions.
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@ But what if attackers try to purify these

perturbations?
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Rethinking Current Protective Perturbations

Existing proactive perturbations methods add imperceptible distortions to
speech, successfully prevent voice cloning in ideal conditions.

r N
@ But what if attackers try to purify these

perturbations?
N ——

If existing defenses are vulnerable to purification, they may provide a
false sense of security.
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Our Contribution 1

“ First systematic evaluation of protective perturbations against voice
cloning when attackers try to purify these perturbations.

O Reveal that existing defenses may fail
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Existing Purification: Effective But Not Good Enough
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< Most prior purification for classification tasks, not voice cloning.

\/

< When applied to voice cloning, they can neutralize some protection but...
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* Different colors (€) represents different speakers.
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Existing Purification: Effective But Not Good Enough
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* Different colors (€) represents different speakers. Arrows (=) point from clean samples toward their corresponding purified samples.
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Existing Purification: Effective But Not Good Enough
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Existing purtfication introduces distortions in voice cloning model embedding spaces,
therefore degrade voice cloning performance.
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De-AntiFake: Rethinking the Protective Perturbations Against Voice Cloning Attacks

33



O ¥EAzLLxg

University of Science and Technology of China

Our Contribution 2

“* Propose a novel purification method (PhonePuRe) to bypass existing
protections.

d Outperforms baselines, further exposing risks in existing defenses.
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Proposed Idea: Purification-Refinement Framework

PhonePuRe (Purification + Phoneme-Guided Refinement)

K/

% Insight: Purified distributions deviate from clean ones.

7/

< Two-Stage Framework:
) Purification Stage: Preliminarily mitigate noise (unconditional diffusion).
J Phoneme-Guided Refinement Stage: Align closer with clean distribution (conditional diffusion).
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Figure: Inference process of our framework.

De-AntiFake: Rethinking the Protective Perturbations Against Voice Cloning Attacks 35



NFERAZLLX g

University of Science and Technology of China

Proposed Idea: Purification-Refinement Framework

PhonePuRe (Purification + Phoneme-Guided Refinement)
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% Insight: Purified distributions deviate from clean ones.
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< Two-Stage Framework:
 Purification Stage: Preliminarily mitigate noise (unconditional diffusion).
J Phoneme-Guided Refinement Stage: Align closer with clean distribution (conditional diffusion).
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Figure: Inference process of our framework.
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Proposed Idea: Purification-Refinement Framework

PhonePuRe (Purification + Phoneme-Guided Refinement)

K/

% Insight: Purified distributions deviate from clean ones.

7/

< Two-Stage Framework:
) Purification Stage: Preliminarily mitigate noise (unconditional diffusion).
 Phoneme-Guided Refinement Stage: Align closer with clean distribution (conditional diffusion).
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Figure: Inference process of our framework.
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Purification Stage: Unconditional Diffusion

< Employs DiffWave model (on waveforms).

/7

< Input: X,q,. Output: xp;.
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Purification Stage: Unconditional Diffusion

< Employs DiffWave model (on waveforms).
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< Input: X,q,. Output: xp;.

< Forward Diffusion: Add noise (T;,, steps).
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Purification Stage: Unconditional Diffusion

< Employs DiffWave model (on waveforms).
< Input: X,q,. Output: xp;.
< Forward Diffusion: Add noise (T;,, steps).
q(Xelxe—1) = N(Xt; v1- .tht—pﬁtl)
< Reverse Diffusion: Denoise (T}, steps).
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Refinement Stage: Why Refinement works?

< Our Observation: Purified (clean) & Purified (protected) samples have similar

distributions.
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Refinement Stage: Why Refinement works?
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< Our Observation: Purified (clean) & Purified (protected) samples have similar

distributions.
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< Our Observation: Purified (clean) & Purified (protected) samples have similar

distributions.
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Refinement Stage: Why Refinement works?

\/

< Therefore, if we train a Refinement model to map Purified (clean) to clean, it
will be likely to map Purified (protected) to nearly clean distributions.
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Protected (%) Purified (Protected) (x)
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8 Purified
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Refinement Stage: Why Refinement works?
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< Therefore, if we train a Refinement model to map Purified (clean) to clean, it

will be likely to map Purified (protected) to nearly clean distributions.
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Refinement Stage: Phoneme-Guided Score-Based Diffusion
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< Employs score-based diffusion model on complex spectrums (m = STFT(x)).

Refined Speech
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Xref
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Refinement Stage: Phoneme-Guided Score-Based Diffusion

L/

< Employs score-based diffusion model on complex spectrums (m = STFT(x)).
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Employs score-based diffusion model on complex spectrums (m = STFT(x)).
Input: Xy, Output: Xpef.
Use Phoneme Guidance A.

Training: Learns to generate mge,, from my,,. (Purified (clean) samples).
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Employs score-based diffusion model on complex spectrums (m = STFT(x)).
Input: Xy, Output: Xpef.
Use Phoneme Guidance A.

Training: Learns to generate mge,, from my,,. (Purified (clean) samples).

Inference: Generates m,¢¢ from my,,,. (Purified (protected) samples).
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Experimental Setup

% Voice Cloning Methods (6 total)
d TTS: YourTTS, SV2TTS, Tortoise
O Voice Conversion: DiffVC, OpenVoice V2, SeedVC

¥ Protection Methods Evaluated (3 total)
J AntiFake, AttackVC, VoiceGuard

*+* Adversarial Purification Baselines (5 total)

O Transformation-based: WaveGuard, SpeakerGuard

1 Reconstruction-based: AudioPure, WavePurifier, DualPure
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Experiment: Objective Results on Effectiveness () "’@ i" é-&ﬁk"’é

< Existing protection: Effective w/o purification
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Experiment: Objective Results on Effectiveness (&) ¥ & # 2 & & * 2
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< Existing protection: Effective w/o purification; but vulnerable to purification.

1.0
® Protected

= WaveGuard
m SpeakerGuard
DualPure
m WavePurifier
AudioPure
I III m Ours

AntiFake AttackVC VoiceGuard
Protection Methods

o o o
BN (0] (0]
1 1 1

o
N
L

Speaker Verification Accuracy 1

o
o

O Lower SVA mains effective protection.
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Experiment: Objective Results on Effectiveness ( )

< Existing protection: Effective w/o purification; but vulnerable to purification.

1.0
® Protected
508 4 = WaveGuard
S
3 m SpeakerGuard
(]
T 06 A DualPure
O . g
= m WavePurifier
RS _
= 0.4 1 » AudioPure
S
S m Qurs
X<
s 0.2 -
QL
&

o
o
I

AntiFake AttackVC VoiceGuard
Protection Methods

| v) Our PhonePuRe purification outperforms baselines in bypassing SV. I
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Experiment: Subjective Results on Effectiveness()) ¥ & # 2 & £ % ¢

University of Science and Technology of China

\/

< Subjective Metric: Human listening test (perceived speaker similarity)
* 01 Please listen carefully to the following two audio clips and judge whether they are from the same speaker.

P 0:00/0:07 e————— ) > 0:.00/0:07 e———— )

Are the speakers in the two audio clips the same person? Please make your judgment.
Same (Certain)
Same (Uncertain)
Different (Uncertain)

Different (Certain)
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Experiment: Subjective Results on EffectivenessC)) ¥ & # 2 & & * 2
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K/

< Existing protection: Effective w/o purification (11% Same); but vulnerable to
purification (42.5% Same).

100% -
- . m Different (Certain)
80% - Different (Uncertain)

60% - Same (Uncertain)
40° m Same (Certain)
6 -
20% A
0% -
Clean Protected AudioPure Ours
70.5% 11% 42.5% 60.5%
Same Same Same Same
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Experiment: Subjective Results on Effectiveness()) ¥ & # 2 & £ % ¢

University of Science and Technology of China

K/

< Existing protection: Effective w/o purification (11% Same); but vulnerable to
purification (42.5% Same).

100% -
- . m Different (Certain)
80% - Different (Uncertain)

60% - Same (Uncertain)
40° m Same (Certain)
6 -
20% A
0% -
Clean Protected AudioPure Ours
70.5% 11% 42.5% 60.5%
Same Same Same Same

‘ v| PhonePuRe bypasses SV & show higher human-perceived similarity (60.5% Same). \
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Our Contribution 3

% Evaluate robustness of our purification against adaptive protections.

d Show generating effective defenses against our method is challenging.
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Experiment: Robustness Against Adaptive Protection

K/

< Adaptive Protection: Protector designs perturbations considering protection.

K/

% Challenge: Calculating the gradients of diffusion models is hard.

K/

% Two gradient approximation strategies: BPDA (+EOT), Adjoint (+EQOT)

1.0 1
[ No Purification
0.8 - Adjoint-AudioPure
B Adjoint-Ours
< 0.6 1 BPDA-AudioPure
(D -
T 04 Bam BPDA-Ours
0.2 1
0.0
1 5 10 15
EOT Size

L)

*

80% cloned samples synthesized from our purified samples successfully bypass SV.

L)
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Experiment: Robustness Against Adaptive Protection

4

< Adaptive Protection: Protector designs perturbations considering protection.

L)

4

% Challenge: Calculating the gradients of diffusion models is hard.

L)

L0

% Two gradient approximation strategies: BPDA (+EOT), Adjoint (+EQOT)

1.0 1
[ No Purification
0.8 - Adjoint-AudioPure
B Adjoint-Ours
< 0.6 1 BPDA-AudioPure
(D -
T 04 Bam BPDA-Ours
0.2 1
0.0
1 5 10 15
EOT Size

% 80% cloned samples synthesized from our purified samples successfully bypass SV.

‘ v/] Protectors struggle to generate effective perturbations even in white-box scenarios. |

L)
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Conclusion

“ First systematic evaluation of protective perturbations against voice
cloning when attackers try to purify these perturbations.

O Reveal that existing defenses may fail

“* Propose a novel purification method (PhonePuRe) to bypass existing
protections.

d Outperforms baselines, further exposing risks in existing defenses.

% Evaluate robustness of our purification against adaptive protections.

d Show generating effective defenses against our method is challenging.

Y FRHZLEAL %S

=2/ University of Science and Technology of China
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Conclusion

| Underscore the urgent need for more robust
solutions to protect our voice

Me———

@E*@@é&%ké

=2/ University of Science and Technology of China
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THANK YOU!

Demo and code website: https://de-antifake.github.io

Contact with any questions: range@mail.ustc.edu.cn



https://de-antifake.github.io/
mailto:range@mail.ustc.edu.cn
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