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Voice Cloning: Useful Apps
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Industry leaders utilize advanced AI
voice synthesis to create more natural
and intelligent Voice AI applications.

AI voice synthesis recreated Val Kilmer's
voice for his role in Top Gun: Maverick
after cancer treatment damaged the actor's
real voice.

In April 2023, a song using AI to clone the
voices of Drake and The Weeknd went viral on
social media, garnering over 15 million views
on TikTok in just two days.
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Rapid advancements in voice cloning have been widely used in 
conversational AI, entertainment and accessibility

Industry leaders utilize advanced AI
voice synthesis to create more natural
and intelligent Voice AI applications.

AI voice synthesis recreated Val Kilmer's
voice for his role in Top Gun: Maverick
after cancer treatment damaged the actor's
real voice.

In April 2023, a song using AI to clone the
voices of Drake and The Weeknd went viral on
social media, garnering over 15 million views
on TikTok in just two days.



Voice Cloning: Security Risks

Finance worker in Hong Kong paid out $25 million after
attending a deepfake video call. Scammers cloned the voices
and images of senior executives to order fraudulent transfers.

Journalist from Vice bypassed a bank's voice verification
system using a free AI voice clone, granting him access to
his personal account information.
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Need for effective defenses against malicious voice cloning

Finance worker in Hong Kong paid out $25 million after
attending a deepfake video call. Scammers cloned the voices
and images of senior executives to order fraudulent transfers.

Journalist from Vice bypassed a bank's voice verification
system using a free AI voice clone, granting him access to
his personal account information.
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Sounds Like Victim
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Sounds Like Victim
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Existing Defense: Protective Perturbations
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Existing Defense: Protective Perturbations
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Existing Defense: Protective Perturbations
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Existing Defense: Protective Perturbations
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Rethinking Current Protective Perturbations

Existing proactive perturbations methods add imperceptible distortions to 
speech, successfully prevent voice cloning in ideal conditions.
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Rethinking Current Protective Perturbations

Existing proactive perturbations methods add imperceptible distortions to 
speech, successfully prevent voice cloning in ideal conditions.
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🤔🤔 But what if attackers try to purify these 
perturbations?



Rethinking Current Protective Perturbations
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Existing proactive perturbations methods add imperceptible distortions to 
speech, successfully prevent voice cloning in ideal conditions.

😦😦 If existing defenses are vulnerable to purification, they may provide a 
false sense of security.

🤔🤔 But what if attackers try to purify these 
perturbations?



If the Attackers Try to Purify the Perturbations…
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Our Contribution 1

 First systematic evaluation of protective perturbations against voice 
cloning when attackers try to purify these perturbations.

 Reveal that existing defenses may fail.

30De-AntiFake: Rethinking the Protective Perturbations Against Voice Cloning Attacks



Existing Purification: Effective But Not Good Enough
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 Most prior purification for classification tasks, not voice cloning.
 When applied to voice cloning, they can neutralize some protection but...

Clean () vs. Protected (★)Clean Samples () Clean () vs. Purified (×) 

* Different colors (🎨🎨) represents different speakers. 
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Clean () vs. Protected (★)Clean Samples () Clean () vs. Purified (×) 

* Different colors (🎨🎨) represents different speakers. Arrows (→) point from clean samples toward their corresponding purified samples.  



Existing Purification: Effective But Not Good Enough
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Clean () vs. Protected (★)Clean Samples () Clean () vs. Purified (×) 

Existing purification introduces distortions in voice cloning model embedding spaces,
therefore degrade voice cloning performance.

* Different colors (🎨🎨) represents different speakers. Arrows (→) point from clean samples toward their corresponding purified samples.  



Our Contribution 2

 First systematic evaluation of protective perturbations against voice 
cloning when attackers try to purify these perturbations.

 Reveal that existing defenses may fail.

 Propose a novel purification method (PhonePuRe) to bypass existing 
protections.

 Outperforms baselines, further exposing risks in existing defenses.
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Proposed Idea: Purification-Refinement Framework

PhonePuRe (Purification + Phoneme-Guided Refinement)
 Insight: Purified distributions deviate from clean ones.
 Two-Stage Framework: 

 Purification Stage: Preliminarily mitigate noise (unconditional diffusion).
 Phoneme-Guided Refinement Stage: Align closer with clean distribution (conditional diffusion).
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Purification Stage: Unconditional Diffusion

 Employs DiffWave model (on waveforms).
 Input: 𝐱𝐱adv. Output: 𝐱𝐱pur.
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Purification Stage: Unconditional Diffusion

 Employs DiffWave model (on waveforms).
 Input: 𝐱𝐱adv. Output: 𝐱𝐱pur.

 Forward Diffusion: Add noise (𝑇𝑇pur steps).

𝑞𝑞 𝐱𝐱𝑡𝑡 𝐱𝐱𝑡𝑡−1 = 𝒩𝒩 𝐱𝐱𝑡𝑡; 1 − 𝛽𝛽𝑡𝑡𝐱𝐱𝑡𝑡−1,𝛽𝛽𝑡𝑡𝐈𝐈
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Purification Stage: Unconditional Diffusion

 Employs DiffWave model (on waveforms).
 Input: 𝐱𝐱adv. Output: 𝐱𝐱pur.

 Forward Diffusion: Add noise (𝑇𝑇pur steps).

𝑞𝑞 𝐱𝐱𝑡𝑡 𝐱𝐱𝑡𝑡−1 = 𝒩𝒩 𝐱𝐱𝑡𝑡; 1 − 𝛽𝛽𝑡𝑡𝐱𝐱𝑡𝑡−1,𝛽𝛽𝑡𝑡𝐈𝐈

 Reverse Diffusion: Denoise (𝑇𝑇pur steps).

𝐱𝐱𝑡𝑡−1 ∼ 𝑝𝑝θ 𝐱𝐱𝑡𝑡−1 𝐱𝐱𝑡𝑡 = 𝒩𝒩 𝐱𝐱𝑡𝑡−1;𝝁𝝁θ 𝐱𝐱𝑡𝑡, 𝑡𝑡 ,𝜎𝜎𝑡𝑡2𝐈𝐈
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Refinement Stage: Why Refinement works?

 Our Observation: Purified (clean) & Purified (protected) samples have similar 
distributions.
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Protected (×)
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Refinement Stage: Why Refinement works?

 Our Observation: Purified (clean) & Purified (protected) samples have similar 
distributions.
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Refinement Stage: Why Refinement works?

 Therefore, if we train a Refinement model to map Purified (clean) to clean, it 
will be likely to map Purified (protected) to nearly clean distributions.
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Refinement Stage: Why Refinement works?

 Therefore, if we train a Refinement model to map Purified (clean) to clean, it 
will be likely to map Purified (protected) to nearly clean distributions.
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Refinement Stage: Phoneme-Guided Score-Based Diffusion

 Employs score-based diffusion model on complex spectrums (𝐦𝐦 = STFT(𝐱𝐱)).
 Input: 𝐱𝐱pur. Output: 𝐱𝐱ref.
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Refinement Stage: Phoneme-Guided Score-Based Diffusion

 Employs score-based diffusion model on complex spectrums (𝐦𝐦 = STFT(𝐱𝐱)).
 Input: 𝐱𝐱pur. Output: 𝐱𝐱ref.

 Use Phoneme Guidance 𝚲𝚲.
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Refinement Stage: Phoneme-Guided Score-Based Diffusion

 Employs score-based diffusion model on complex spectrums (𝐦𝐦 = STFT(𝐱𝐱)).
 Input: 𝐱𝐱pur. Output: 𝐱𝐱ref.

 Use Phoneme Guidance 𝚲𝚲.

 Training: Learns to generate 𝐦𝐦clean from 𝐦𝐦pur (Purified (clean) samples).
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Refinement Stage: Phoneme-Guided Score-Based Diffusion

 Employs score-based diffusion model on complex spectrums (𝐦𝐦 = STFT(𝐱𝐱)).
 Input: 𝐱𝐱pur. Output: 𝐱𝐱ref.

 Use Phoneme Guidance 𝚲𝚲.

 Training: Learns to generate 𝐦𝐦clean from 𝐦𝐦pur (Purified (clean) samples).

 Inference: Generates 𝐦𝐦ref from 𝐦𝐦pur (Purified (protected) samples).
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Experimental Setup

 Voice Cloning Methods (6 total)
 TTS: YourTTS, SV2TTS, Tortoise
 Voice Conversion: DiffVC, OpenVoice V2, SeedVC

 Protection Methods Evaluated (3 total)
 AntiFake, AttackVC, VoiceGuard

 Adversarial Purification Baselines (5 total)
 Transformation-based: WaveGuard, SpeakerGuard
 Reconstruction-based: AudioPure, WavePurifier, DualPure
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Experiment: Objective Results on Effectiveness

 Existing protection: Effective w/o purification

 Lower SVA mains effective protection.
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Experiment: Objective Results on Effectiveness

 Existing protection: Effective w/o purification; but vulnerable to purification.

 Lower SVA mains effective protection.
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Experiment: Objective Results on Effectiveness

 Existing protection: Effective w/o purification; but vulnerable to purification.

53De-AntiFake: Rethinking the Protective Perturbations Against Voice Cloning Attacks

0.0

0.2

0.4

0.6

0.8

1.0

AntiFake AttackVC VoiceGuard

Sp
ea

ke
r V

er
ifi

ca
tio

n 
Ac

cu
ra

cy
  ↑

Protection Methods

Protected
WaveGuard
SpeakerGuard
DualPure
WavePurifier
AudioPure
Ours

✅ Our PhonePuRe purification outperforms baselines in bypassing SV.



Experiment: Subjective Results on Effectiveness
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 Subjective Metric: Human listening test (perceived speaker similarity)



Experiment: Subjective Results on Effectiveness
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 Existing protection: Effective w/o purification (11% Same); but vulnerable to 
purification (42.5% Same).
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Experiment: Subjective Results on Effectiveness
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 Existing protection: Effective w/o purification (11% Same); but vulnerable to 
purification (42.5% Same).
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✅ PhonePuRe bypasses SV & show higher human-perceived similarity (60.5% Same).



Our Contribution 3

 First systematic evaluation of protective perturbations against voice 
cloning when attackers try to purify these perturbations.

 Reveal that existing defenses may fail.

 Propose a novel purification method (PhonePuRe) to bypass existing 
protections.

 Outperforms baselines, further exposing risks in existing defenses.

 Evaluate robustness of our purification against adaptive protections. 

 Show generating effective defenses against our method is challenging.
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Experiment: Robustness Against Adaptive Protection

 Adaptive Protection: Protector designs perturbations considering protection.
 Challenge: Calculating the gradients of diffusion models is hard.
 Two gradient approximation strategies: BPDA (+EOT), Adjoint (+EOT)

 80% cloned samples synthesized from our purified samples successfully bypass SV.
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Experiment: Robustness Against Adaptive Protection

 Adaptive Protection: Protector designs perturbations considering protection.
 Challenge: Calculating the gradients of diffusion models is hard.
 Two gradient approximation strategies: BPDA (+EOT), Adjoint (+EOT)

 80% cloned samples synthesized from our purified samples successfully bypass SV.
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✅ Protectors struggle to generate effective perturbations even in white-box scenarios.



Conclusion

 First systematic evaluation of protective perturbations against voice 
cloning when attackers try to purify these perturbations.

 Reveal that existing defenses may fail.

 Propose a novel purification method (PhonePuRe) to bypass existing 
protections.

 Outperforms baselines, further exposing risks in existing defenses.

 Evaluate robustness of our purification against adaptive protections. 

 Show generating effective defenses against our method is challenging.
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Conclusion

 First systematic evaluation of protective perturbations against voice 
cloning when attackers try to purify these perturbations.

 Reveal that existing defenses may fail.

 Propose a novel purification method (PhonePuRe) to bypass existing 
protections.

 Outperforms baselines, further exposing risks in existing defenses.

 Evaluate robustness of our purification against adaptive protections. 

 Show generating effective defenses against our method is challenging.
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Underscore the urgent need for more robust 
solutions to protect our voice



THANK YOU!

Demo and code website: https://de-antifake.github.io

Contact with any questions: range@mail.ustc.edu.cn

https://de-antifake.github.io/
mailto:range@mail.ustc.edu.cn
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